Microstructure of a Radiation Fog

1981 ◽  
Vol 38 (2) ◽  
pp. 454-458 ◽  
Author(s):  
H. E. Gerber
Keyword(s):  
1980 ◽  
Vol 37 (3) ◽  
pp. 622-629 ◽  
Author(s):  
Michael B. Meyer ◽  
James E. Jiusto ◽  
G. Garland Lala
Keyword(s):  

1973 ◽  
Vol 7 (11) ◽  
pp. 1079-1092 ◽  
Author(s):  
J.A. Garland ◽  
J.R. Branson ◽  
L.C. Cox
Keyword(s):  

2022 ◽  
Vol 22 (1) ◽  
pp. 319-333
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the Local and Non-local Fog Experiment (LANFEX) field campaign. Seven of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst three are research-grade SCMs designed for fog simulation, and the LESs are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number concentration (CDNC) conditions. The main SCM bias appears to be toward the overdevelopment of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parameterisation, as it is to the underlying aerosol or CDNC.


2021 ◽  
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the LANFEX field campaign. 7 of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst 3 are research-grade SCMs designed for fog simulation, and the LES are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality, and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number (CDNC) conditions. The main SCM bias appears to be toward over-development of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP-SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parametrization, as it is to the underlying aerosol or CDNC.


2021 ◽  
Author(s):  
Gert-Jan Steeneveld ◽  
Roosmarijn Knol

<p>Fog is a critical weather phenomenon for safety and operations in aviation. Unfortunately, the forecasting of radiation fog remains challenging due to the numerous physical processes that play a role and their complex interactions, in addition to the vertical and horizontal resolution of the numerical models. In this study we evaluate the performance of the Weather Research and Forecasting (WRF) model for a radiation fog event at Schiphol Amsterdam Airport (The Netherlands) and further develop the model towards a 100 m grid spacing. Hence we introduce high resolution land use and land elevation data. In addition we study the role of gravitational droplet settling, advection of TKE, top-down diffusion caused by strong radiative cooling at the fog top. Finally the impact of heat released by the terminal areas on the fog formation is studied. The model outcomes are evaluated against 1-min weather observations near multiple runways at the airport.</p><p>Overall we find the WRF model shows an reasonable timing of the fog onset and is well able to reproduce the visibility and meteorological conditions as observed during the case study. The model appears to be relatively insensitive to the activation of the individual physical processes. An increased spatial resolution to 100 m generally results in a better timing of the fog onset differences up to three hours, though not for all runways. The effect of the refined landuse dominates over the effect of refined elevation data. The modelled fog dissipation systematically occurs 3-4 h hours too early, regardless of physical processes or spatial resolution. Finally, the introduction of heat from terminal buildings delays the fog onset with a maximum of two hours, an overestimated visibility of 100-200 m and a decrease of the LWC with 0.10-0.15 g/kg compared to the reference.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 230
Author(s):  
Inyeob La ◽  
Seong Soo Yum ◽  
Ismail Gultepe ◽  
Jae Min Yeom ◽  
Jae In Song ◽  
...  

To enhance our understanding of fog processes over complex terrain, various fog events that occurred during the International Collaborative Experiments for Pyeongchang 2018 Winter Olympics and Paralympics (ICE-POP) campaign were selected. Investigation of thermodynamic, dynamic, and microphysical conditions within fog layers affected by quasi-periodic oscillation of atmospheric variables was conducted using observations from a Fog Monitor-120 (FM-120) and other in-situ meteorological instruments. A total of nine radiation fog cases that occurred in the autumn and winter seasons during the campaign over the mountainous region of Pyeongchang, Korea were selected. The wavelet analysis was used to study quasi-period oscillations of dynamic, microphysical, and thermodynamic variables. By decomposing the time series into the time-frequency space, we can determine both dominant periods and how these dominant periods change in time. Quasi-period oscillations of liquid water content (LWC), pressure, temperature, and horizontal/vertical velocity, which have periods of 15–40 min, were observed during the fog formation stages. We hypothesize that these quasi-periodic oscillations were induced by Kelvin–Helmholtz instability. The results suggest that Kelvin–Helmholtz instability events near the surface can be explained by an increase in the vertical shear of horizontal wind and by a simultaneous increase in wind speed when fog forms. In the mature stages, fluctuations of the variables did not appear near the surface anymore.


2018 ◽  
Vol 99 (10) ◽  
pp. 2061-2077 ◽  
Author(s):  
J. D. Price ◽  
S. Lane ◽  
I. A. Boutle ◽  
D. K. E. Smith ◽  
T. Bergot ◽  
...  

AbstractFog is a high-impact weather phenomenon affecting human activity, including aviation, transport, and health. Its prediction is a longstanding issue for weather forecast models. The success of a forecast depends on complex interactions among various meteorological and topographical parameters; even very small changes in some of these can determine the difference between thick fog and good visibility. This makes prediction of fog one of the most challenging goals for numerical weather prediction. The Local and Nonlocal Fog Experiment (LANFEX) is an attempt to improve our understanding of radiation fog formation through a combined field and numerical study. The 18-month field trial was deployed in the United Kingdom with an extensive range of equipment, including some novel measurements (e.g., dew measurement and thermal imaging). In a hilly area we instrumented flux towers in four adjacent valleys to observe the evolution of similar, but crucially different, meteorological conditions at the different sites. We correlated these with the formation and evolution of fog. The results indicate new quantitative insight into the subtle turbulent conditions required for the formation of radiation fog within a stable boundary layer. Modeling studies have also been conducted, concentrating on high-resolution forecast models and research models from 1.5-km to 100-m resolution. Early results show that models with a resolution of around 100 m are capable of reproducing the local-scale variability that can lead to the onset and development of radiation fog, and also have identified deficiencies in aerosol activation, turbulence, and cloud micro- and macrophysics, in model parameterizations.


Sign in / Sign up

Export Citation Format

Share Document